Research Note

First Report of Ostertagia leptospicularis
(Nematoda: Trichostrongyloidea) in Calves (Bos taurus)
from North America1

DONNA M. MULROONEY, JANELL K. BISHOP, AND GARY L. ZIMMERMAN

College of Veterinary Medicine, Oregon State University, Corvallis, Oregon 97331

ABSTRACT: Specimens of Ostertagia leptospicularis were recovered from abomasas of 17 of 23 naturally infected calves in Oregon. Also present were: Ostertagia kolchida, Ostertagia lyrata, and Ostertagia ostertagi. The co-occurrence of specific pairs of species (O. leptospicularis: O. kolchida, and O. ostertagi: O. lyrata) supports the hypothesis of polymorphic species pairs within the Ostertagiinae. This is the first report of O. leptospicularis and the second of O. kolchida in cattle from North America.

KEY WORDS: Oregon, Ostertagia leptospicularis, Nematoda

Ostertagia leptospicularis Asadov, 1953, is a common abomasal parasite of members of the Cervidae and has been found in the abomasum of other sylvatic and domestic ruminants. The known geographic range of O. leptospicularis has until recently been confined to the Palearctic region and New Zealand where it is considered to be fairly common in cervids and less common in cattle. Common hosts include elk, Cervus elaphus (Jansen, 1960; Drozdz, 1966; Kutzer and Hinaidy, 1969; Dunn, 1983), moose, Alces alces (Drozdz, 1966; Nilsson, 1971), sika deer, Cervus nippon (Drozdz, 1966), fallow deer, Cervus dama (Swierstra et al., 1959; Drozdz, 1966), roe deer, Capreolus capreolus (Swierstra et al., 1959; Dunn, 1965; Drozdz, 1966; Kutzer and Hinaidy, 1969; Nilsson, 1971; Andrews et al., 1974; Drozdz et al., 1987), chamois, Rupricapra rupricapra (Kutzer and Hinaidy, 1969), caribou, Rangifer tarandus (Freutel and Lankester, 1989), cattle, Bos taurus (Rose, 1963, 1968; Hinaidy et al., 1972), and sheep, Ovis aries (Swierstra et al., 1959; Nilsson, 1971).

The data presented in this report support the hypothesis of polymorphism suggested by Lancaster and Hong (1981). A report by Lichtenfels et al. (1988) also supports this hypothesis and provides a redescriptions of 7 species of the Ostertagiinae that are considered to be polymorphs of only 3 species, with each species pair being morphological variants of a single species. Between each polymorphic species pair, the major and minor species are usually found together, with 1 partner always dominant. An exception to this was reported by Rickard and Zimmerman (1986) when O. kolchida was discovered in the absence of its major species, O. leptospicularis.

The recovery of O. leptospicularis and O. kolchida during the present study represents the first report of O. leptospicularis, and the second of O. kolchida, from cattle in North America. The first report of O. kolchida from North America was by Rickard and Zimmerman (1986) in cattle from Oregon. Freutel and Lankester (1989) reported the recovery of O. leptospicularis from captive caribou at the Kakabeka Falls Game Farm, Canada, representing the first report from North America. Lichtenfels et al. (1988) listed O. leptospicularis from California cattle in a table of specimens studied, but we have learned (Lichtenfels, pers. comm.) that the item was a typo-

1 Published as Oregon Agricultural Experiment Station Technical Paper No. 9377 Oregon State University, Corvallis.

Copyright © 2011, The Helminthological Society of Washington
Table 1. Intensity and prevalence of species of *Ostertagia* nematodes* recovered from Oregon calves (Bos taurus).

<table>
<thead>
<tr>
<th>Species</th>
<th>Control</th>
<th>Treated</th>
<th>Prevalence (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>O. ostertagi</td>
<td>5,620</td>
<td>4,187</td>
<td>100</td>
</tr>
<tr>
<td>O. lyrata</td>
<td>16</td>
<td>22</td>
<td>55</td>
</tr>
<tr>
<td>O. leptospicularis</td>
<td>98</td>
<td>88</td>
<td>73</td>
</tr>
<tr>
<td>O. kolchida</td>
<td>4</td>
<td>2</td>
<td>8</td>
</tr>
</tbody>
</table>

* Male specimens only.

Table 2. Morphometrics of male specimens of *Ostertagia leptospicularis* recovered from Oregon calves (Bos taurus).

<table>
<thead>
<tr>
<th>Character</th>
<th>Number of specimens measured</th>
<th>Ranges (mean) in μm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Body length</td>
<td>82</td>
<td>4,750–6,833 (5,817)</td>
</tr>
<tr>
<td>Esophagus length</td>
<td>82</td>
<td>617–864 (779)</td>
</tr>
<tr>
<td>Esophagus width at base</td>
<td>78</td>
<td>27–59 (43)</td>
</tr>
<tr>
<td>Esophageal–intestinal valve length</td>
<td>82</td>
<td>74–167 (118)</td>
</tr>
<tr>
<td>Cervical papillae*</td>
<td>82</td>
<td>179–387 (298)</td>
</tr>
<tr>
<td>Excretory pore*</td>
<td>82</td>
<td>154–370 (283)</td>
</tr>
<tr>
<td>Width of body†</td>
<td>79</td>
<td>67–163 (96)</td>
</tr>
<tr>
<td>Sub-ventral gland orifices*</td>
<td>77</td>
<td>189–380 (296)</td>
</tr>
<tr>
<td>Spicule length</td>
<td>79</td>
<td>137–195 (159)</td>
</tr>
<tr>
<td>Triruncation of spicule tips‡</td>
<td>77</td>
<td>97–147 (118)</td>
</tr>
<tr>
<td>Length of gubernaculum</td>
<td>70</td>
<td>13–48 (29)</td>
</tr>
<tr>
<td>Width of gubernaculum</td>
<td>71</td>
<td>4–13 (7)</td>
</tr>
<tr>
<td>Sjoberg’s organ</td>
<td>82</td>
<td>absent</td>
</tr>
<tr>
<td>Bursal ray pattern§</td>
<td>82</td>
<td>2–1–2</td>
</tr>
</tbody>
</table>

* Distance measured from anterior end.
† Distance measured at pre-bursal papillae.
‡ Distance measured from anterior end of spicules.
§ Pattern following system of Durette-Desset (1983).

graphical error, and no specimens of *O. leptospicularis* from North American cattle were included in that study. Since these reports, *O. leptospicularis* has again been collected from cattle in Oregon (Rickard, pers. comm.) and most recently from Montana (Decker and Mulrooney, unpubl. data).

During a routine anthelmintic efficacy trial, several specimens of *Ostertagia leptospicularis* were recovered. The trial was conducted early in the summer of 1988 at Oregon State University. Calves (Bos taurus) of mixed breed (less than 12 months of age), harboring naturally acquired gastrointestinal nematodes, were transported from the ranch of origin in Molalla, Oregon, to pastures located at the Berry Creek Beef Ranch of the Oregon State University Department of Animal Science, Corvallis, Oregon. A total of 23 animals was used for the study and was divided into 2 groups (11 in the nontreated, control group and 12 in the treated group). The treated animals were provided with free-choice medicated mineral mix (morantel tartrate), while nonmedicated mineral mix was available free-choice for the control animals. The quantity of mineral mix consumed by each individual animal is unknown. The 2 groups of animals were kept on separate pastures for a total of 63 days, then necropsied for recovery and identification of gastrointestinal nematodes present.

Based on the identification of male nematode specimens, 4 species of *Ostertagia* were identified: *O. ostertagi*, *O. lyrata*, *O. kolchida*, and *O. leptospicularis*. *Ostertagia leptospicularis* was recovered from 17 of the 23 cattle (8 nontreated, control animals and 9 treated animals). Intensity of *Ostertagia* species for each group of calves is presented in Table 1.

The mean values for the ratios of polymorphic species pairs were 99.7% *O. ostertagi*: 0.3% *O. lyrata* and 96.1% *O. leptospicularis*: 3.9% *O. kolchida* for the nontreated group of animals. From the group that received the medicated mineral mix, the mean values were 99.5% *O. ostertagi*: 0.5% *O. lyrata* and 97.8% *O. leptospicularis*: 2.2% *O. kolchida*. Of the polymorphic species pairs, *O. leptospicularis* and *O. ostertagi* are the dominant species, whereas *O. kolchida* and *O. lyrata* comprise the minor species, respectively. Morphological measurements of the specimens identified as *O. leptospicularis* were taken from approximately 80 male specimens (Table 2) and compared very well to those reported by Lichtenfels et al. (1988). By ANOVA, no statistical differences (*P > 0.05*) were observed in measurements between the treated and control groups of animals. Several specimens of *O. leptospicularis* have been deposited with the United States National Museum (USNM), Helminth Collection Nos. 81033 and 81034.

The mode of introduction and geographic distribution of *O. leptospicularis* in domestic ruminants in North America has yet to be determined. This species may have been: (1) present in North America but not previously recognized; (2) brought into the United States recently with animals imported form an area where *O. leptospicularis* is endemic; or (3) introduced by direct
interchange of parasites between sylvatic and domestic hosts, being cervids and cattle in this case. The range of origin in the present study is populated by black-tailed deer (Odocoileus hemionis) and occasionally utilized by elk (Cervus elaphus), which could account for direct interchange of parasites between these sylvatic cervids and cattle. The exchange of parasites between sylvatic and domestic hosts has been previously suggested by reports of the common deer parasites Ostertagia kolchida (Rickard and Zimmerman, 1986) and Oesophagostomum venulosum (Hoberg et al., 1988) in cattle from Oregon.

Ostertagia leptospicularis is considered to be highly pathogenic to cattle (Al Saqur et al., 1980, 1982a, b, 1984; Bisset et al., 1984; Sulger Buel et al., 1984) and could be considered as a potential threat to the livestock industry.

The authors would like to thank Eric P. Hoberg, J. Ralph Lichtenfels, and Lora G. Rickard for their advice on this manuscript.

Literature Cited

Copyright © 2011, The Helminthological Society of Washington