Research Note

PATRICK M. MUZZALL and C. ROBERT PEEBLES

Department of Zoology, Natural Science Building, Michigan State University, East Lansing, Michigan 48824

ABSTRACT: Eight helminth species (3 Trematoda, 5 Nematoda) were found in 100 wood frogs, *Rana sylvatica* LeConte, and 5 helminth species (1 Trematoda, 4 Nematoda) were found in 88 northern spring peepers, *Pseudacris c. crucifer* (Wied-Neuwied), collected from southern lower Michigan in spring 1989 and 1990. Of the species identified, *Osvaldocruzia pipiens* and *Haematoloechus parviflexus* had the highest prevalence and mean intensity in wood frogs, respectively. *Glypthelmins pennsylvaniensis* had the highest prevalence and mean intensity in spring peepers. Michigan is a new locality record for *G. pennsylvaniensis*, *Cosmocercoides dukae*, *O. pipiens*, and *Rhabdias ranae*.

Parasites of wood frogs, *Rana sylvatica* (family Ranidae), and (or) spring peepers, *Pseudacris* (syn. *Hyla*) *c. crucifer* (family Hylidae), have been surveyed by Brandt (1936), Rankin (1945), Odlaug (1954), Ashton and Rabalais (1978), Baker (1979), Williams and Taft (1980), and Coggins and Sajda (1982). However, little information on helminths of these frog species from Michigan is available. Najarian (1955) found 4 helminth species each in wood frogs and spring peepers collected near Ann Arbor, Michigan. This note presents new information on the helminths of wood frogs and spring peepers from the Great Lakes area.

One hundred (> ± SD snout–vent length = 40 ± 3.8, range 27–47 mm) wood frogs, *R. sylvatica*, 88 (24 ± 1.6, 20–28 mm) northern spring peepers, *P. c. crucifer*, and 1 (29 mm) western chorus frog, *Pseudacris triseriata* (Wied-Neufeld), were collected in April–May 1990 by dip net from a marsh in the Rose Lake Wildlife Area, Shiawassee and Clinton counties, southcentral Michigan. Sixty-six spring peepers (23 ± 1.6, 21–31 mm) were also collected from a marsh southwest of Otis Lake in the Barry Game Area, Barry County, southwestern lower Michigan in March–May 1989. Frogs were pithed and all visceral organs, musculature and skin, were examined within 24 hours of collection. Helminths were processed using conventional techniques. Prevalence is the percentage of infected frogs in a sample; mean intensity is the mean number of worms per infected frog, and values are expressed as a mean ± 1 SD. Values for Brillouin's index for use in diversity and evenness (Pielou, 1975) were calculated using common logarithms for all helminths irrespective of their site of infection. Representative specimens of helminths have been deposited in the U.S. National Parasite Collection (USNM), Beltsville, Maryland (accession nos. 81867–81872).

Eight helminth species infected wood frogs and 5 species infected spring peepers. This number of helminth species found in wood frogs is the largest reported to date. Of the species identified from wood frogs, *Osvaldocruzia pipiens* and *Haematoloechus parviflexus* had the highest prevalence and mean intensity, respectively (Table 1). Fifty-three wood frogs harbored 1 helminth species, 16 harbored 2 species, and 8 harbored 3 species; overall prevalence of infection was 77%. The mean number of helminth species, helminth abundance, Brillouin's diversity and evenness for helminth infracomunities in wood frogs were 1.1 ± 0.8 (0–3), 3.5 ± 4.7 (0–24), 0.0434 ± 0.0846 (0.0266–0.0602), and 0.1195 ± 0.2232 (0.0752–0.1638), respectively. *Glypthelmins pennsylvaniensis* had the highest prevalence and mean intensity in spring peepers. Of the 21 (24%) spring peepers infected, none harbored more than 1 species. In contrast, Brandt (1936) in North Carolina found 13 helminth species in 60 spring peepers. In our study, there were no significant differences in prevalence (chi-square analysis, $P > 0.05$) and intensity (Student's t-test, $P > 0.05$) of parasitism between females and males of each frog species. There were also no distinct increases in infection for each helminth species or in helminth infracomunity descriptors with frog length.

Twenty-three (38%) spring peepers from the Barry Game Area were infected with *G. pennsylvaniensis*.
Table 1. Prevalence and mean intensity of helminths in 100 wood frogs and 88 spring peepers from the Rose Lake area.

<table>
<thead>
<tr>
<th></th>
<th>Wood frog</th>
<th>Spring peeper</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Prevalence</td>
<td>Mean intensity ± 1 SD (range)</td>
</tr>
<tr>
<td>Digenea</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glypthelmins pennsylvaniensis</td>
<td>10 9.0 ± 6.1 (1-20)</td>
<td>small intestine</td>
</tr>
<tr>
<td>Glypthelmins quieta</td>
<td>2 1.0</td>
<td></td>
</tr>
<tr>
<td>Haematoloechus parviplexus</td>
<td>9 3.7 ± 5.2 (1-17)</td>
<td>lung</td>
</tr>
<tr>
<td>Harwood</td>
<td>7 10.3 ± 8.6 (1-23)</td>
<td>mesenteries</td>
</tr>
<tr>
<td>Unidentified metacercariae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nematoda</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cosmocercoides dukae</td>
<td>12 2.3 ± 1.7 (1-10)</td>
<td>rectum</td>
</tr>
<tr>
<td>Oswaldocruzia pipiens</td>
<td>34 2.0 ± 1.4 (1-7)</td>
<td>stomach, small intestine, rectum</td>
</tr>
<tr>
<td>Walton, 1929*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rhabdias ranae</td>
<td>23 2.6 ± 3.6 (1-15)</td>
<td>lung, body cavity</td>
</tr>
<tr>
<td>Walton, 1929*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spiroxys sp.</td>
<td>15 3.2 ± 2.9 (1-10)</td>
<td>mesenteries, stomach wall</td>
</tr>
</tbody>
</table>

* Gravid.
† New host record.

Glypthelmins pennsylvaniensis with a mean intensity (range) of 10 ± 26 (1-126); no other helminth was found. The single western chorus frog from the Rose Lake Area was infected with 16 G. pennsylvaniensis and 4 Cosmocercoides dukae.

Most helminths were identified except for 1 male Cosmocercoides sp. from a spring peeper. It was similar to C. dukae, having 15 rosette papillae in its subventral rows, but total body length, spicule and gubernaculum measurements were within the ranges for C. variabilis. Therefore, we cannot determine its specific identity. Measurements of specimens from wood frogs and the western chorus frog fall within the ranges of C. dukae given by Vanderburgh and Anderson (1987). Cosmocercoides dukae is known to mature in molluscs, but frogs serve as incidental hosts. Anderson (1960) showed that C. dukae infections in frogs were of short duration. Spiroxys sp. is reported for the first time from wood frog and spring peeper and the recovery of it from tissues may indicate these frog species serve as second intermediate hosts (Hedrick, 1935) or paratenic hosts. Glypthelmins pennsylvaniensis was described by Cheng (1961) from spring peepers in Pennsylvania. Since then it has been found in Pseudacris spp. from Georgia by Sullivan and Byrd (1970) and Wisconsin by Coggins and Sajdak (1982). The occurrence of G. pennsylvaniensis in Michigan is a new locality record and provides additional evidence for host specificity in Pseudacris. In the present study, G. quieta was found in only 2 wood frogs; Rankin (1945) found G. quieta in a spring peeper. The wood frog is a new host record for G. quieta and H. parviplexus and the western chorus frog for G. pennsylvaniensis. Michigan is a new locality record for C. dukae, O. pipiens, and Rhabdias ranae.

Frog collections were made under a permit from the Michigan Department of Natural Resources (MDNR). We thank John Lerg and Mark Bishop, Barry Game Area, and Glenn Belyea, Rose Lake Wildlife Research Center, MDNR, for their cooperation; David Schinderle, Maxine Lipon, and Stephanie Simstad for their assistance in the field and laboratory. Funding for this study was provided by the College of Natural Science, Michigan State University.
Literature Cited

Hedrick, L. R. 1933. The life history and morphology of Spiroxys contortus (Rudolfi); Nematoda: Spi-ruridae. Transactions of the American Microscopical Society 54:307–335.

Research Note

Parapharyngodon kartana in Two Skinks, Emoia nigra and Emoia samoense (Sauria: Scincidae), from Samoa

STEPHEN R. GOLDBERG and CHARLES R. BURSEY

1 Department of Biology, Whittier College, Whittier, California 90608 and
2 Department of Biology, Pennsylvania State University, Shenango Valley Campus, 147 Shenango Avenue, Sharon, Pennsylvania 16146

Abstract: Examination of 9 Emoia nigra revealed the presence of a nematode, Parapharyngodon kartana (prevalence 44%, mean intensity 3), in the large intestine and third-stage spirurid larvae in the small intestine. A single specimen of Emoia samoense also harbored P. kartana in the large intestine. These are new host records.

Key Words: Nematoda, Parapharyngodon kartana, spirurid larvae, Emoia nigra, Emoia samoense, Scincidae.

The black skink, Emoia nigra (Hombron and Guichenot, 1853) Sternfeld, 1920, occurs in the South Pacific on the Caroline Islands, Bismarck Archipelago, Solomon Islands, New Hebrides, Fiji, Samoa, and Tonga (McCoy, 1980). The Samoan skink, Emoia samoense (Duméril, 1851) Schmidt, 1923, is known from Fiji, Loyalty Islands, Samoa, and Tonga (Burt and Burt, 1932). The purpose of this note is to report the presence of the nematode, Parapharyngodon kartana (Johnston and Mawson, 1941) Mawson, 1971, and spirurid larvae in E. nigra and P. kartana in E. samoense. These findings represent new host records.

Nine E. nigra, mean snout–vent length (SVL) 89 mm ± 7 mm SD, were examined. Eight were from Tutuila Island, American Samoa (14°17’S, 170°41’W); 1 was from Upolu Island, Western Samoa (13°50’S, 171°45’W). A single E. sa-